信息详细内容

字号:   

电厂设计运行中的一些参考技术

浏览次数: 日期:2014-12-24

    随着国家对环境保护问题的重视,电厂在设计运行中,首先要考虑节能减排,本篇仅提供一些参考方向,供大家了解。

1、管道系统优化

通过适当增大管径、减少弯头、尽量采用弯管和斜三通等低阻力连接件等措施,降低主蒸汽、再热、给水等管道阻力。机组热效率提高0.1%~0.2%,可降低供电煤耗0.3~0.6克/千瓦时。

2、低温省煤器

    在除尘器入口或脱硫塔入口设置1级或2级串联低温省煤器,采用温度范围合适的部分凝结水回收烟气余热,降低烟气温度从而降低体积流量,提高机组热效率,降低引风机电耗。预计可降低供电煤耗1.4~1.8克/千瓦时。

    适用于30~100万千瓦各类型机组。

3、汽轮机通流部分改造

    对于13.5、20万千瓦汽轮机和2000年前投运的30和60万千瓦亚临界汽轮机,通流效率低,热耗高。采用全三维技术优化设计汽轮机通流部分,采用新型高效叶片和新型汽封技术改造汽轮机,节能提效效果明显。预计可降低供电煤耗10~20g/kWh。

    适用于13.5~60万千瓦各类型机组。

4、汽轮机间隙调整及汽封改造

    部分汽轮机普遍存在汽缸运行效率较低、高压缸效率随运行时间增加不断下降的问题,主要原因是汽轮机通流部分不完善、汽封间隙大、汽轮机内缸接合面漏汽严重、存在级间漏汽和蒸汽短路现象。通过汽轮机本体技术改造,提高运行缸效率,节能提效效果显著。预计可降低供电煤耗2~4g/kWh。

    适用于30~60万千瓦各类型机组。

5、锅炉排烟余热回收利用

   在空预器之后、脱硫塔之前烟道的合适位置通过加装烟气冷却器,用来加热凝结水、锅炉送风或城市热网低温回水,回收部分热量,从而达到节能提效、节水效果。采用低压省煤器技术,若排烟温度降低30℃,机组供电煤耗可降低1.8g/kWh,脱硫系统耗水量减少70%。

    适用于排烟温度比设计值偏高20℃以上的机组。

6、锅炉本体受热面及风机改造

    锅炉普遍存在排烟温度高、风机耗电高,通过改造,可降低排烟温度和风机电耗。具体措施包括:一次风机、引风机、增压风机叶轮改造或变频改造;锅炉受热面或省煤器改造。 预计可降低煤耗1.0~2.0g/kWh。

    适用于30万千瓦亚临界机组、60万千瓦亚临界机组和超临界机组。

7、锅炉运行优化调整

    电厂实际燃用煤种与设计煤种差异较大时,对锅炉燃烧造成很大影响。开展锅炉燃烧及制粉系统优化试验,确定合理的风量、风粉比、煤粉细度等,有利于电厂优化运行。预计可降低供电煤耗0.5~1.5g/kWh。

8、电除尘器改造及运行优化

    根据典型煤种,选取不同负荷,结合吹灰情况等,在保证烟尘排放浓度达标的情况下,试验确定最佳的供电控制方式(除尘器耗电率最小)及相应的控制参数。通过电除尘器节电改造及运行优化调整,节电效果明显。预计可降低供电煤耗约2~3g/kWh。

    适用于现役30万千瓦亚临界机组、60万千瓦亚临界机组和超临界机组。

9、热力及疏水系统改进

   改进热力及疏水系统,可简化热力系统,减少阀门数量,治理阀门泄漏,取得良好节能提效效果。预计可降低供电煤耗2~3g/kWh。

10、汽轮机阀门管理优化

   通过对汽轮机不同顺序开启规律下配汽不平衡汽流力的计算,以及机组轴承承载情况的综合分析,采用阀门开启顺序重组及优化技术,解决机组在投入顺序阀运行时的瓦温升高、振动异常问题,使机组能顺利投入顺序阀运行,从而提高机组的运行效率。预计可降低供电煤耗2~3g/kWh。

    适用于20万千瓦以上机组。

11、高压除氧器乏汽回收

    将高压除氧器排氧阀排出的乏汽通过表面式换热器提高化学除盐水温度,温度升高后的化学除盐水补入凝汽器,可以降低过冷度,一定程度提高热效率。预计可降低供电煤耗约0.5~1g/kWh。

    适用于10~30万千瓦机组。

12、加强管道和阀门保温

管道及阀门保温技术直接影响电厂能效,降低保温外表面温度设计值有利于降低蒸汽损耗。但会对保温材料厚度、管道布置、支吊架结构产生影响。

12、凝汽式汽轮机供热改造

    对纯凝汽式汽轮机组蒸汽系统适当环节进行改造,接出抽汽管道和阀门,分流部分蒸汽,使纯凝汽式汽轮机组具备纯凝发电和热电联产两用功能。大幅度降低供电煤耗,一般可达到10g/kWh以上。

    适用于12.5~60万千瓦纯凝汽式汽轮机组。

13、布袋除尘

含尘烟气通过滤袋,烟尘被粘附在滤袋表面,当烟尘在滤袋表面粘附到一定程度时,清灰系统抖落附在滤袋表面的积灰,积灰落入储灰斗,以达到过滤烟气的目的。烟尘排放浓度可以长期稳定在20mg/Nm3以下,基本不受灰分含量高低和成分影响。

14、低氮燃烧

    采用先进的低氮燃烧器技术,大幅降低氮氧化物生成浓度。炉膛出口氮氧化物浓度可控制在200mg/Nm3以下。